Computational acoustic vision by solving phase ambiguity confusion
نویسندگان
چکیده
منابع مشابه
Solving Mean Field Ambiguity by Flow Equations
We compare different methods used for non-perturbative calculations in strongly interacting fermionic systems. Mean field theory shows a basic ambiguity related to the possibility to perform Fierz transformations. The results depend strongly on an unphysical parameter which reflects the choice of the mean field. Renormalization group equations in a partially bosonized setting can overcome this ...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
ALLQBF Solving by Computational Learning
In the last years, search-based QBF solvers have become essential for many applications in the formal methods domain. The exploitation of their reasoning efficiency has however been restricted to applications in which a “satisfiable/unsatisfiable” answer or one model of an open quantified Boolean formula suffices as an outcome, whereas applications in which a compact representation of all model...
متن کاملPhase-differencing in Stereo Vision - Solving the Localisation Problem
Complex Gabor filters with phases in quadrature are often used to model evenand odd-symmetric simple cells in the primary visual cortex. In stereo vision, the phase difference between the responses of the left and right views can be used to construct a disparity or depth map. Various constraints can be applied in order to construct smooth maps, but this leads to very imprecise depth transitions...
متن کاملPhase Estimation and Phase Ambiguity Resolution by Message Passing
Several code-aided algorithms for phase estimation have recently been proposed. While some of them are ad-hoc, others are derived in a systematic way. The latter can be divided into two different classes: phase estimators derived from the expectation-maximization (EM) principle and estimators that are approximations of the sum-product message passing algorithm. In this paper, the main differenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acoustical Science and Technology
سال: 2009
ISSN: 1346-3969,1347-5177
DOI: 10.1250/ast.30.199